
I S R A E L  J O U R N A L  O F  M A ' r H B M A ' r I C S  7 6  (1991) ,  106-117  

ON THE EXISTENCE OF MATRICES WITH P R E S C R I B E D  
HEIGHT AND LEVEL CHARACTERISTICS 

B Y  

DANIEL HERSHKOWITZ* 

M~ht, m~icm Dqm~m~t, Technion, Hail4 3BOO0, lm~d 

AND 

HANS SCHNEIDER* * 

M~hem4iice DeFartrncnt, Unitersi~ of Wi~ondn-Madimon 

Madieon, W153706, USA 

A B S T R A C T  

We determine all possible relations between the height (Weyr) characteristic 

and the level characteristic of an A/=matrix. Under the assumption that the 

two characteristics have the same number of elements, we determine the pos- 

sible relations between the two characteristics for a wider class of matrices, 

which also contains the class of strict|y triangular matrices over an arbitrary 

field. Given two sequences which satisfy the above condition, we construct 

a looplees acyclic graph G with the following property: Every matrix whc~e 

graph is G has its height characteristic equal to the first sequence and its level 

characteristic equal to the second. We give several counterexamples to possible 

extensions of our results, and we raise some open problems. 

1. I n t r o d u c t i o n  

In this  pape r  we de te rmine  an possible re la t ions  be tween  the  height  (Weyr) 

charac ter i s t ic  and the  level charac ter i s t ic  of  an M - m a t r i x .  Indeed,  unde r  the 

a s sumpt ion  t h a t  the  two character is t ics  have the  same n u m b e r  of e lements ,  we 
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determine the possible relations between the two characteristics for a wider class 
of matrices, which also contains the class of strictly triangular matrices over an 
arbitrary field. 

In the introduction to [15] it is observed that there is a relation between the 

two characteristics for an M-matrix, and in that paper and in several subse- 

quent ones the case of equality was explored, e.g [13], [12], [1], [8], [9]. The 

question of characterizing all possible relations was thus raised implicitly in the 

1950's, and the problem was stated explicitly in [161. In this paper we solve 

this problem. Given two sequences 7 and ~ of positive integers with the same 

number of elements, we show that there exists a matrix in the class considered 

with level characteristic ~ and height characteristic 7 if and only if 7 majorises 

when reordered in non-increasing order. This characterization was conjectured 

by Berman and van den Driessche [private communication, 1987]. 

We now describe our paper in more detail. Section 2 is devoted to definitions 

and notation. In particular we here define the level characteristic and the height 
characteristic of A. We also give our definition of majorization which is related 

to the definition found in many places, e.g. [11, p.7], but is not identical with it, 

since we wish to be consistent with our definition in [8]. 

In Section 3 we study the relation between the height and level characteristics 
for strictly lower triangular matrices under the assumption that the character- 

istics have the same number of elements. Given two sequences 7 and ~ which 

satisfy the above condition, we construct a loopless acyclic graph G with the 

following property: Every matrix whose graph is G has its height characteristic 

equal to 7 and its level characteristic equal to ~. This result is then extended 

in Section 4 to the class of matrices all of whose singular vertices are simple 

(i.e. matrices which may be partitioned into a block triangular form, so that the 
singular diagonal blocks have 0 as a simple eigenvalue). This class, of course, con- 

talus the class of M-matrices. We thus obtain the results mentioned above. The 

paper is concluded with some partial results on the two characteristics for the 

class of matrices with all singular vertices simple, where we omit the assumption 

that the characteristics have the same number of elements. 

In Sections 3 and 4 we give several examples which illustrate our theorems 

and we state counterexamples to possible extensions of our results. We also 

raise some open problems. For example, given sequences ~ and 17, it would be 

interesting to characterize all graphs G such that for all matrices A whose graph 

is G, the level characteristic of A equals ~ and the height characteristic equals 

7. 

This paper continues the series of joint papers [6], [7], [4], [5], [8], and [91, 



Vol. 75, 1991 MATRICES WITH PRESCRIBED HEIGHT 107 

on the graph theoretic spectral theory of matrices. Other recent papers closely 

related to this series are [2] and [3]. These papers emphasise the relation between 

the combinatorial structure of a matrix and the structure of the generalised 

eigenspace of am eigenvalue of the matrix. Of particular interest in most of these 

papers is the case where the matrix is an M-matrix and the eigenvalue is 0. 

2. N o t a t i o n  and  D,,R~itions 

In this paper we assume that A is an n × n matrix over an arbitrary field. The 

index of A, that is the siJe of the largest Jordan block associated with 0 as an 

eigenvalue of A, is assumed to be p. 

Notation 2.1: For a positive integer ~ we denote by In) the set {1 , . . . ,  n}. 

Notation 2.2: For a square matrix B we denote by n(B) the nullity of B (the 

dimension of the nullspace of B), and by r(B) the r~nk of B. 

Notation 2.3: Let r, _ (n). We denote by A[~] the principal submatrix of A 

whose rows and columns are indexed by ~ in the natural order. 

Definition 2.4: For i e (p) let ~,(A) = n(A')  - n(A ' -1)  (where n(A °) = 0). The 

sequence (~I(A), . . . ,  ~p(A)) is called the he ight  character is t ic  of A, and is 

denoted by ~(A). Normally we write ~ for ~,(A) where no confusion should 

result. 

We remark that the height characteristic of A is often referred to as the Weyr  

charac ter i s t ic  of A, e.g. [13]. 

We continue with some graph theoretic definitions. All the graphs we deal 

with are simple directed graphs. 

Definition 2.5: The g raph  G(A) of A is defined to be the graph with vertex set 

(n), and such that there is an arc from i to j if a~y ~ 0. 

Definition 2.6: Let G and H be two graphs with the same vertex set. We say 

that G is a subg raph  of H, and we denote it by G c H, if every arc of G is an 

arc of H. 

Notation 2. 7: Let G be a graph. We denote the transitive closure of G by G. 

Delinition 2.8: A graph is said to be acy¢lie if it contains no simple cycle other 

than loops. An acyclic graph is said to be loopless if it has no loops. 
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Definition 2.9: Let i be a vertex in an acyclic graph G. We define the level 

of i as the maximal length (number of vertices) of a simple chain in G that 

terminates at i. We call the set of all vertices of level j the j - th  level of G, and 

we denote the cardinality of the j-th level of G by Ay(G). Let G have q levels. 

The sequence (At(G), . . . ,  Aq(G)) is called the level character is t ic  of G, and is 

denoted by A(G). 

We now assume that A is partitioned in a lower triangular r × r block form 

(Aiy)~ , with square diagonal blocks. Note that the concepts defined in Defi- 

nitions ( 2 . 1 0 )  - (2.14) below depend on the chosen partitioning for A, and that 

this is not explicitly noted there. 

Defnition 2.10: The reduced  g raph  R(A) of A is defined to be the graph with 

vertex set (r), and such that there is an arc from i to j if A O. ~ 0. Note that 

since A is a lower triangular block matrix, R(A) is acycllc. 

Definition 2.11: (i) A vertex i in R(A) is sxid to be s ingular  if/l~i is singular. 

The set of all singular vertices of R(A) is denoted by S. 

(ii) A singular vertex i is said to be simple if 0 is a simple eigeuvalue of A~i. 

Defnition 2.12: The s ingular  g raph  S(A) of A is defined to be the graph with 

vertex set S, and such that there is an arc from i to j if i = j or if there is a 

chain from i to j in R(A). Note that S(A) is a transitive acyclic graph. 

De~nition 2.13: The level character is t ic  A(A) of A is defined to be the se- 

quence A(S(A)). 

Remark 2.14: After performing an identical permutation on the rows and the 

columns of A we may assume that A is in Frobenius  no rma l  form, namely a 

(lower) triangular block form, where the diagonal blocks are square irreducible 

matrices. As is well known, the Frobenins normal form is unique only up to cer- 

tain permutations of the blocks and permutations within the blocks; see [13] and 

the references there for further information. However, the possible partitioning 

associated with the Frobenius normal forms of a given matrix A determine the 

same level characteristic for A. 

Defni~ion 2.15: A Z-matriz is a square matrix of the form A = a l  - P, where 

is a re~l number and P is a (entrywise) nonnegative matrix. Such a Z-matriz 

is an ~/-matriz if a is greater than or equal to the spectra] radius of P. 
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Convention 2.16: If A is an M-matr iz  or a triangular matrix, then we shall 

always assume that  the partitioning of A which defines the reduced graph is the 
Frobenius normal form of A. 

Observe that  if A is a triangular matrix then G(A) = R(A) .  

Notation 2.17: Let A be a (finite) sequence of positive integers. We denote by 
the sequence A reordered in a non-increasing order. 

Definition 2.18: Let p = (pl,... ,/z¢) be a non-increasing sequence of positive 

integers. Consider the diagram formed by t columns of stars, such that the fith 

column (from the left) has ~a" stars. The sequence ~* duo/to/~ is defined as the 

sequence of row lengths of the diagram (read upwards). 

We remark that a dual sequence is often called a conjugate sequence. Also, 

many equivalent definitions may be given for dual sequences, e.g. [9] and [11]. 

Definition 2.19: Let a = ( a t , . . . ,  a , )  and ~ = ( ~ I , . . . ,  ~ )  be sequences of non- 

negative integers. We say that  ~ m a j o r i s e s  a ,  and denote it by ~ ~_ ~, if 

~1 +'" "q-ok _~ ~I ÷'" "'f~ for every h E (t--1}, and c~q-...q-~ = ~I+'" "÷~t. 

We remark that our definition is related to the definition of majorisation as 

found in many places, e.g [11, p.7], but is not identical with it, since there 

is said to majorise ce if ~ reordered in a non-increaslng order majol~es (in our 

sense) a reordered in a non-increasing order. Thus, the two definitions coincide 

if the sequences a and ~ are non-increasing. 

8. T h e  E x i s t e n c e  o f  T r i a n g u l a r  M a t r i c e s  W i t h  P r e s c r i b e d  C h a r a c t e r -  
is t ics  

In this section we discuss strictly triangular matrices over an arbitrary field. We 
start with an easy proposition. 

PROPOSITION 3.1: (i) Let A beanm×mmatrixsuch thatGC-G(A) C--G' 

where G is a graph tha~ consists ofa c~ain o[length rn. Then ~(A) = (1,..., 1). 

(ii) Let v/-- (vh,..., no) be a non-increasing sequence o/positive inte#ers, and let 

G be a graph that coneists of ~l pairwise disjoint chain~, where the sequence of 

lengths of the chaina, ordered in a non-increasing order, is ~* . Then for every 
,q,are ,~at,= A ~th C C_ C(A) C_ -~ ~e ha,e ~(A) = ~. 
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Proof: . (i) Let /c E ( m -  1). Observe that  the k-th sub-diagonal of A ~ is 

nonzero, and that  the entries above it are all zero. Therefore, r(A ~) = rn - k. 

Also, A m = O. The result follows. 

(ii) Let ~?* = (rl~, . . . ,  t?~), where t = th • Let A be a square matrix such that  

G C_ G(A)  C_ ~ .  Then A is a direct sum of t matrices of sizes r /~, . . . ,  r/~, each 

of which satisfies the conditions of part (i) of the proposition. Our claim follows 

from (i). [] 

The following lemma is immediate and well-known. 

LEMMA 3.2:  Let A be a square matr/x over an arbitrary ~eld, let i be a vertex 

in G(A) ,  and let k be a positive integer. / f  there is no chain in G(A)  of  length 

k + 1 that starts at i, then the i- th row of  A k is a zero row. 

THEOREM 3 . 3 :  Let A = (A1,. . . ,  Ap) be a sequence of positive integers, and 

let ~ = (~1 , . . . ,~p)  be a non-increasing sequence of posi t~e integers, l f  ~ ~ Ti 

then there e x i t s  a loopless acyc//c graph G such that  for every matr ix A over an 

arhitra/T ~e/d with G(A) = G we have ~(A) = ~ and , (A)  = r/. ~'~trthermore, 

the graph G may be chosen to be transitive. 

Proof: Since ~ -< r/, it follows that  7" "< ~*, see [11, p.174]. By the Gale-Ryser 

Theorem (e.g. [11, p.176]), there exists a (0 - 1) p × t l l  matrix E, where the 

sequence of the row sums of E, read from the bottom, is ~, and where the 

sequence of the column sums of E, read from the left, is 7*. Since t/consists of p 

positive elements, it follows that  the first element of ~?* is p, so the first column 

of E consists of l 's.  Let n = ~1 + . . .  + ~v" Then E has exactly n nonzero 

elements. We replace these nonzero elements in E by the numbers 1 , . . . ,  n (in 

any order), to obtain a new matrix F.  We now construct a loopless acyclic graph 

G with vertex set (n) as follows. For every nonzero column of F let ( i l , . . . ,  it) 

be the nonzero elements of F in that  column, read from the bottom. Then let 

G contain the chain ( i~ , . . .  , i t) .  Also, for every i G ( 2 , . . .  ,p)  let there be an arc 

from f/,1 to every nonzero element in the (i - 1)-th row of F.  The latter assures 

that  all the vertices in the i-th row of F are of level ~v+l-~, i G (p). Therefore, 

we have ~(G) = ~. Now let A be a matrix over an arbitrary field with G(A) = G. 

Clearly, ~(A) = ~. We claim that  t?(A) = 7. Observe that  after performing a 

permutation similarity on A, A may be partitioned as 

I A l l  0 ] 
A = L A21 A22 ' 
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where Al l  and A22 are square. Furthermore, A22 = A[a] where a is the set of 

the p elements in the first column of F,  and A11 is a direct sum of matrices A[~y] 

where fly is the set of the nonzero elements in a nonzero colunm j" of F, j > 1. 

Consider the matrix 

Observe that  )~(O(A')) -- 17, and that  O(A') consists of 171 pairwise disjoint 

chains, where the sequence of lengths of the chains, ordered in a non-increasing 

order, is 7" • By Proposition 3.1, we have 7(A e) -- 17. We now claim that  

7(A) = 7(A'). We shall prove it by showing that  for every k E (p) we have 

r(A ~) = r(A'~). Clearly, 

(3.4) r(A h) >_ r(A~1 ) -}- r(Ak22) = r(A'k). 

Partition A ~ conformably with the partitioning of A. Then 

= | A I ~ )  ) 

where A ~  ) -- A~, i : 1, 2. We have 

(3.s) ,(A <_ ,(Ah) + 

where A : [~'21[A(k)A(k)]~22 J" Observe that  a conta~us exactly k elements of level 

greater than or equal to p + 1 - k. So, there is no chain of length k ÷ 1 that  

starts at any of these elements, and by Lemma 3.2 the corresponding k rows of 

.4 are zero rows. Therefore, we have r(A) < p - k. Since r(A) > r(A~2 ) = p - k, 
it now follows that  r(A) = r(A~2 ). By (3.4) and (3.5) we now obtain 

r(A k) = r(A~x) -t- r(A~2 ) = r(A'k), 

which proves our claim. 

To see that  the required graph may be chosen to be transitive, observe that  

we could apply the above proof to the transitive closure of G rather than to G. 
[] 

We remark that  in our report [10] we provide an exmnple illustrating the proof 

of Theorem 3.3. Also, let G be the graph constructed in the proof of Theorem 

3.3. In [10] we sketch an alternative proof to the fact that  every matrix A with 

G(A) = G satisfies 7(A) = 7, which does not use Proposition 3.1 or Lemma 3.2, 

and we provide there sn example illustrating this alternative part of the proof 
of Theorem 3.3. 
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Remark 3.6: If there exists a looplese acyclic graph G such that for every matrix 

A over an arbitrary field with G(A) = G we have A(A) = A and 7(A) = 7, then 

A and 7 must have the same number of elements. For proof, observe that we 

may choose all the nonsero elements of A to be negative, and hence A may be 

chosen to be an M-matrix. As is well known (e.g. [14]), the height and the level 

characteristics of an M-matrix consist of the same number of elements, which 

proves our claim. Therefore, Theorem 3.3 does not hold if we allow A and 7 

to have different number of elements (and if we replace ~ ~ 7 by ~ _ (7, 0) as 

defined in Section 5). 

In the proof of Theorem 3.3 we construct an acyclic graph G such that for 

every matrix A over an arbitrary field with G(A) = G we have A(A) = A and 

7 (A) = 7. Motivated by this we pose the following problem. 

Problem 3.7: Let A = (Az,. . . ,  Ap) be a sequence of positive integers, and let 

7 = (7z, . . - ,7p) be a non increasing sequence of positive integers, such that 
~_<7. 

(i) Characterize all acyclic graphs (7 such that for every matrix A with G(A) = 

G we have ~(A) = ~ and 7(A) = 7- 

(ii) Characterize all acyclic graphs G such that for some matrix A with G(A) = 

G we have A(A) = A and 7(A) = 7- 

Remark 3.8: Problems similar to Problems 3.7.(i), (ii) can be stated specifically 

for nonnegative matrices as well as M-matrices, where G(A) is replaced by S(A). 

Remark 3.9: The case where A = 7 for M-matrices was discussed in great detail 
in [8] and [9], where 36 equivalent conditions are given. 

4. Ma t r i ce s  W i t h  All S ingular  Vert ices  Simple  

In this section we apply the result of the previous section in order to study 

the relations between the height characteristic and the level characteristic of a 

matrix A with all singular vertices simple. It follows from the Index Theorem 

proven in [2] as weU as in [5], that the index p of A is lees than or equal to the 

number q of levels in the singular 8raph of A. We start this section by proving a 

necessary and sufficient condition for given sequences A and 7 to be the level and 

the height characteristics of a matrix satisfying certain conditions. In particular, 

our results apply to ~f-matrices, and hence solve a long standing problem, which 

was posed explicitly in [16] (see Remark 4.2). 
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THEOREM 4 . 1 :  Let A = (A , , . . . ,  Aq) be a sequence o[ positive integers, and 

let r / =  (r/z,- . . ,  r/p) be a non-/ncreas/ng sequence of positive integers. Then the 

/o//owing are equiva/ent. 

( i )  p = q,  r/. 

(ii) p = q, and there exists a loopless transitive acyc//c graph G such that for 

every matrix A over an arbitrary 6eld with G(A) = G we have A(A) = A and 
= r/.  

(iii) p = q, and there exists a loopless acyclic graph G such that for every matrix 

A over an arbitrary field with G(A) = a we have A(A) = A and r/(A) = r/. 

(iv) p = q, and there ex/sts a strictly (lower) triangular matrix A such that 

= a n d  r / ( A )  = r/. 

(v) There exists a strictly (lower) triangular nonnegative matrix A such that 

= a n d  r / ( A )  = r/ .  

(vi) There exists an M-matr ix  S such that A(A) = A and r/(A) = •. 

(vii) p = q, and there ex/sts a matrix A with all singular vertices simple such 

that A(A) = A and , (A)  = , .  

Proo[: (i) =~ (ii) follows from Theorem 3.3. 

(ii) =~ (iii) =~ (iv) =~ (vii) is immediate. 

(iii) =~ (v) is immediate. 

(v) =~ (vi) follows by taking the negative of a matrix satisfying (v). 

(vi) =~ (vii) is clear since M-matrices have a/l singular vertices simple. 

(vii) =:~ (i). Let A = (Ax, . . . ,  Ap). By Theorem 3.5 in [3], (vii) implies Az + 

• "" + Ak _< r/z + "'" + ~t, k 6 (p). Since A has all singular vertices simple, it 

follows that Ax + " "  + Ap = r/x + "'" + r/p, and hence A ~ r/. [] 

Remark 4.2: Using the notation of [16], the equivalence of Conditions (i) and 

(vi) in Theorem 4.1 solves the S . (A)  and S . (B )  versions of Questions (8.8) and 

(8.9) in [16]. This result was conjectured by Berman and van den Driessche 
[private communication, 1987]. 

Remark 4.3: The implication (vii) =~ (i) in Theorem 4.1 does not hold if a 

has a singular vertex which is not simple. Note that  in such a case we have 

Ax + "'" + Aq < T/, + --- + r/p, and hence we cannot have A _-< r/. 

Remark 4.4: The following condition, 

(a) p = q, and for every loopleu transitive aeyclie graph G such that A(G) -- A 

t h e ,  ezist8 a matriz A with G(A) = G s.ch that A(A) = A and r/(A) = 17, 
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immediately implies Condition (iv) in Theorem 4.1. However, Condition (a) is 

not implied by the conditions in Theorem 4.1. In fact, even the weaker condition, 

with G(A) replaced by R(A),  is not implied by the condition, in Theorem 4.1 

as demonstrated by the following example. Let ~ = ~ = (2,2), and let G be the 

loopless transitive acyclic graph 
1 2 
T / 
3 4. 

Let A be a matrix with R(A) = G. If ~(A) = ~ then all the vertices in R(A) are 

singular. If, furthermore, ~(A) = ~/then it follows that  every vertex is a simple 

singular vertex. Since A is direct sum (R(A) is not connected), it follows from 

Theorem 4.10 below that  ~(A) is either (4,0) or (3,1), which is a contradiction. 

Therefore, there exists no matrix A with R(A) = G such that  ~(A) = ~ and 

We continue with three easy observations. 

Observation 4.5: (i) Let A be a sequences of p positive integers. Then the only 

sequence of p positive integers that  majorises ~ is ~ if and only if ~2 = 1. 

(ii) Let H be a non-increasing sequences of p positive integers. Then the only 

non-increasing sequence of p positive integers that  is majorised by ~/is 17 if and 

only if ;71 <_~ ~}p -~- I .  

(iii) Let ~/ be a non-increasing sequences of p positive integers. Then every 

sequence (~ with & = ~ satisfies a = ~ if and only if ~p = T/1. 

In view of Observation 4.5, the following corollaries follow immediately from 

Theorem 4.1. 

COROLLARY 4.6:  Let ~ = ( ~ l , . . . , ~ p )  be a sequence o[positive integers. 

Then the following are equivalent. 
(i) All M.matrices A with ~(A) = A have the same height characteristic. 

(ii) All M-matrices A with ~(A) = ~ satis[y ~(A) = ~. 

( z )  = i. 

COROLLARY 4.7: Let ~ = (~i,..., 'Ip) be a non-m~rem~ing sequence of posi- 

tive integers. Then the following are equivalent. 

(i) All M-matrices A with ~(A) = ~ have the same reordered level characteristic 

i(A). 
(ii) All M-matrices A with ~(A) = ~ satisfy ~(A) = 7. 

(i~) ~11 <- Vlp -I- 1. 
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COROLLARY 4.8:  Let 17 = (71, ' ' ' ,  7p) be a non-increasing sequence o£posi- 

tire integers. Then the following are equivalent. 

(i) All ~[-matrices A with 7(A) = 7 have Ue same level charscteristlc. 

(~) All U - m a t r ~ ,  A with 7(A) = ,  , a t ~  ~(A) = 7. 

(~) 7~ = 71. 

Let A and 7 be sequences of p positive integers such that  ~ _ 7. Let G be a 

transitive graph such that  A(G) = A. By the remark that  follows Proposition 

(7.5) in [8], if there exists an M-matr ix  A with R(A) = G such that  ~(A) = A and 

, (A)  -- 7, then there exists an M-matr ix  A with G(A) = G such that  ),(A) = A 

and ~(A) = r/. However, if G is not transitive then the above implication is false 

in general, as demonstrated by the following example. 

Example 4.9: Let )~ = (2, 1, 2), and let G be the graph 

1 2 
\ / 

3 
/ \ 

4 5 

satisfying A(G) = &. Now let 7 = (2, 2, 1). Clearly, ~ _~ ~. The M-matr ix  

A = 

0 : 0 : 0 0 : 0 : 0 
• ° .  ° , •  , • •  • • •  • • °  , , °  • • •  • ° •  ° ° °  • ° o  

0 0 0 0 0 0 
° , °  ° 0 •  • ° •  . . . . . .  ° °  . . . .  • • •  • • o  , , °  

--1 i 0 : 1 --1 ! 0 i 0 

0 : - 1  " - 1  1 " 0 " 0 

• . .  . ° .  . o .  . . .  . . .  . o .  . . .  . . .  . * .  ° ° .  

o i o : - 1  o ! o i o 
° . •  o . .  . . °  . * o  o . °  ° * ,  o o .  . . .  ° ° .  . . o  

0 i 0 i 0 - 1  i 0 i 0 

satisfies R(A)  = G, and we have A(A) --- A and 7(A) = ~/. However, it is easy 

to verify that  every matrix A with G(A) = G satisfies 7(A) --- (3, I, 1), and so 
7(A) # 7. 

So far in this section, we have discussed the case of matrices A with all singu]ar 

vertices simple, for which we have p = q. We conclude the paper with a brief 
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discussion of the case p < q. We remark that the partitioning of A is not 

necessarily the Frobenins normal form. 
Let ~ = (~x, - . - ,  ~q) and r / =  ( ~ , . . . ,  r/~), where p _< q. We use the notation 

(~, 0) for the sequence ~ = (~x , . . . ,  ~q), where o~ = r/i for i _< p and o~ = 0 

for p < i _< q. The following theorem follows from Theorem (3.5) in [3] and the 

remark that  follows there. 

THEOREM 4 .10 :  Let A have all s/ngu|ar vertlces s/mp/e. Then ~(A) 

(~(A),0). 

Motivated by Theorem (4.10), we ask the following. 

Question 4.11: Let ~ = (~1,- . - ,  ~q) be a sequence of positive integers, and let 

= (~1,- . . ,  ~v) be a non-increasing sequence of positive integers. Assume fur- 

ther that  p < q and that ~ ___ (r],0). Does there exist a matrix A with ~(A) = 

A special case of Theorem 4.10 is the following. 

THEOREM 4 .12 :  LetGbealooplessacyclicBraphwith~(G) = ~  = (~1, . . . , ,~ 
Then to ,  e,~.~ , , ,a t ,~  A wi~h C(A)  = C we have ,~ -< (,~(A), 0). 

Here too, one might ask a question similar to Question 4.11. That  is, given 

a sequence ~ = ()~1,.--,)~e) of positive integers, and a non-increasing sequence 

= ( ~ i , . . . ,  ~p) of positive integers, such that p < q and ~ --<_ (7, 0). Does 

there exist a ]ooplees scyclic graph G with ~(G) = ~ and a matrix A with 
G(A) = G such that  ~(A) = ~? However, the answer to this question is negative, 

as ~ e m o ~ t r a t ~  by choosing ~ = (1,1) a n d .  = (2). Clear|y, ~ _~ (~,0). 
However, for every loopleM acyclic graph G with ~(G) = ~ and every matrix A 

with G(A) = G, we have r/(A) = (1,1). 
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